Product Advantages

One of the Smallest 6-Axis Sensors in the World: The Nano25 fits into restricted spaces of research applications.

Extremely High Strength:

- EDM wire-cut from high-yield strength stainless steel.
- Maximum allowable single-axis overload values are 7.1 to 15 times rated capacities.

High Signal-to-Noise Ratio: Silicon strain gages provide a signal 75 times stronger than conventional foil gages. This signal is amplified, resulting in near-zero noise distortion.

IP65 and IP68 (4m) Versions Available: The IP65 version of the transducer is available for use in wet environments. The IP68 version is for underwater environments to a maximum depth of 4 meters in fresh water. Contact ATI Industrial Automation for drawings and more information.

The Nano25 F/T transducer

The transducer is made of hardened stainless steel with integral interface plates made from high-strength stainless steel.

Typical Applications

- Telerobotics
- Robotic surgery
- Robotic hand research
- Finger-force research

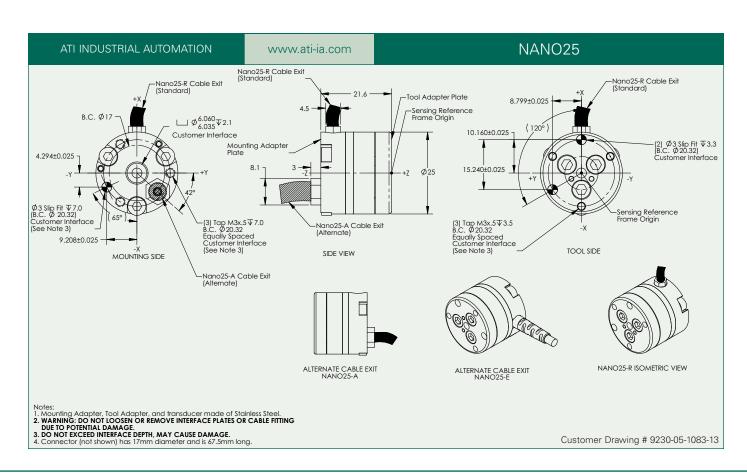
	SENSING RANGES Axes		orations 3-25-25	US-50-50	
	Fx, Fy (±lbf)	25		50	
NS	Fz (±lbf)	100		200	
AT 10	Tx, Ty (±lbf-in)	25		50	
CALIBRATIONS	Tz (±lbf-in)	25		30	
	RESOLUTION	System Type*			
ENGLISH	Axes	CTL	Net/DAQ	CTL	Net/DAQ
	Fx, Fy (lbf)	1/112	1/224	1/56	1/112
	Fz (lbf)	3/112	3/224	3/56	3/112
	Tx, Ty (lbf-in)	1/80	1/160	1/40	1/80
	Tz (lbf-in)	1/160	1/320	1/80	1/160

	SENSING RANGES	Calib	orations			
	Axes	SI-	125-3	SI-250-6		
	Fx, Fy (±N)	125		250		
SN	Fz (±N)	500		1000		
Į.	Tx, Ty (±Nm)	3		6		
CALIBRATIONS	Tz (±Nm)	3		3.4		
	RESOLUTION	System Type*				
METRIC	Axes	CTL	Net/DAQ	CTL	Net/DAQ	
	Fx, Fy (N)	1/24	1/48	1/12	1/24	
	Fz (N)	1/8	1/16	1/4	1/8	
	Tx, Ty (Nm)	1/660	1/1320	1/330	1/660	
	Tz (Nm)	1/1320	1/2640	1/660	1/1320	

^{*}CTL: Controller F/T System; Net: Net F/T System; DAQ: 16-bit DAQ F/T System. The resolution is typical for most applications and can be improved with filtering. Resolutions quoted are the effective resolution after dropping four counts of noise (Net/DAQ) or eight counts of noise (CTL). All sensors calibrated by ATI.

Applied loads must be within range in each of the six axes for the F/T sensor to measure correctly (refer to the transducer manual for complex loading information).

Single-Axis Overload	English	Metric			
Fxy	±520 lbf	±2300 N			
Fz	±1600 lbf	±7300 N			
Тху	±380 lbf-in	±43 Nm			
Tz	±560 lbf-in	±63 Nm			
Stiffness (Calculated)	English	Metric			
X-axis & Y-axis force (Kx, Ky)	3.0x10⁵ lb/in	5.3x10 ⁷ N/m			
Z-axis force (Kz)	6.3x10⁵ lb/in	1.1x10 ⁸ N/m			
X-axis & Y-axis torque (Ktx, Kty)	5.7x10⁴ lbf-in/rad	6.5x10 ³ Nm/rad			
Z-axis torque (Ktz)	8.1x10⁴ lbf-in/rad	9.2x10 ³ Nm/rad			
Resonant Frequency (Non-IP rate	Resonant Frequency (Non-IP rated, Measured)				
Fx, Fy, Tz	3600 Hz				
Fz, Tx, Ty	3800 Hz				
Physical Specifications	English	Metric			
Weight*	0.14 lb	0.0634 kg			
Diameter*	0.984 in	25 mm			
Height*	0.85 in	21.6 mm			


"The force/torque systems from ATI are ideal in our study of human grip force coordination and production. They are as close to a turn-key system as we have found."

> Professor Jay L. Alberts Dept. of Exercise Science and Physical Education Arizona State University

Note:

Applying moments beyond ±30 lbf-in (±3.4 Nm) in Tz can cause hysteresis and permanent zero-point change in the Nano25.

^{*}Specifications are for non-IP rated models. Diameter excludes any connector or cable features.

