ADJ 시리즈 디지털 정션 박스 매뉴얼

Version : 1.08

Revised : 2024-08-07

주의

- ◆ 본 설명서의 내용은 예고 없이 변경될 수 있습니다.
- ◆ 본 설명서의 내용이 잘못되거나 기재가 누락된 곳 등 문의 사항이 있으면 구매하신 곳으로
 연락 주십시오.
- ◆ 제품의 성능 향상의 위하여 예고 없이 기능이 변경될 수 있습니다.

설치 전 유의사항

본 제품은 정밀 전자기기로 취급 시 아래와 같은 주의가 필요합니다.

- ◆ 진동이 심한 곳에서는 사용하지 마십시오.
- ◆ 순간적으로 과도한 충격을 주지 마십시오.
- ◆ 운용 중에는 제품이 비를 맞지 않게 주의하여 주십시오.
- ◆ 급격한 온도변화가 있는 장소는 가급적 피하십시오.
- ◆ 고압이나 전기적 잡음이 심함 곳에는 설치하지 마십시오.
- ◆ 사용자 임의로 절대로 개조, 분리 혹은 수리하지 마십시오.
- ◆ 스위치는 가볍게 눌러도 동작이 되니 지나친 힘을 가하지 마십시오.

INDEX

1. 제품 사양	3
2. 각 부 명칭	4
2.1. 제품 외관	4
2.2. 제품 내부	5
3. 결선 방법	7
3.1. POWER (전원)	7
3.2. EXT (외부 연결)	7
3.3. 스트레인게이지 센서	8
4. 부하 교정	9
4.1. 실 부하 교정	9
4.2. 등가 입력 교정	11
5. 중력 보상	12
6. 교정 변경	14
6.1. 영점 재 교정	14
6.2. 분해도 변경	14
6.3. 스판상수 변경	15
7. 백업 및 복원	16
8. 설정 모드	17
9. 테스트 모드	19
10. 시리얼 인터페이스	
10.1. 전송 데이터 포맷	
10.2. 커맨드 전송 포맷	
10.3. ModBus-RTU 전송 포맷	

1. 제품 사양

표시 부		이 96 위치 OLED Display (내장)
<u>шл</u> т		
A/D CONVE	RTER	24 Bit (50Hz)
스위치		TACT 스위치 5개 (내장)
케이스 재질		ABS 플라스틱
방수 방진 등	급	IP-65
사용가능센서	1	스트레인게이지 브릿지 센서
센서 인가 전압		DC 4.5V
외부 분해능		1/99,999
입력 감도 및 범위		0.2uV/D, 0~39mV (-19.5~19.5mV)
시리얼 인터페이스		RS-485 기본, ModBus-RTU
으셔 비하	OP-01	RS-232C (RS-232C와 RS-485 동시 사용가능)
곱선 사양	OP-13	오픈 컬렉터 출력 (에러 발생시 알람 출력)
전원 및 소비전력		외부 전원 7~28VDC, 1W
제품 동작 온 습도		-20 ~ 60℃, 85% R.H. (결로 현상이 없는 곳)
제품 무게		약 0.3kg

[ADJ]

[ADJ-DS]

2. 각 부 명칭

<u>2.1. 제품 외관</u>

1) ADJ

번호	명칭	기능
1	POWER (전원)	외부 전원 7~28VDC를 연결 부 (소비 전력 1W)
2	EXT(외부 연결)	시리얼 인터페이스 및 오픈 컬렉터 출력 연결 부
3~8	LC6~LC1 (로드셀)	6개의 로드셀 연결 부

2) ADJ-DS

번호	명칭	핀 사양	
1	POWER (전원)	4: VCC(7~28VDC) / 5: GND	
I	EXT(외부 연결)	1: RS485 TRXD+ / 2: RS485 TRXD- / RS485 COM	
3~7	CH6~CH1 (로드셀)	1: EXC+ / 2: EXC- / 3: SIG+ / 4: SIG-	

<u>2.2. 제품 내부</u>

1) ADJ

번호	명칭	기능	
1	USB 커넥터	데이터 저장 및 펌웨어 업그레이드 용 USB 커넥터	
2	상/하/좌/우 스위치	표시 부 내용의 상/하/좌/우를 조작할 때 사용 Main Manu에서는 [좌] 또는 [우]키를 2초간 누르면 영점 키로 동작합니다.	
3	선택 스위치	설정 값 선택 시 사용	
4	표시기	0.96인치 OLED	
5	RS-485 통신	RS-485 통신 연결 터미널	
6	RS-232C 통신	RS-232C 통신 연결 터미널 (OP-01)	
7	전원 부	7~28VDC 외부 전원 연결 터미널	
8	인디케이터 통신	전용 인디케이터(CKUBS) 통신 연결 터미널 (미사용)	
9	오픈 컬렉터 출력	에러 발생 시 알람 출력 터미널 (OP-13)	
10	로드셀 6 커넥터	6번 로드셀 연결 커넥터입니다.	
11	로드셀 5 커넥터	5번 로드셀 연결 커넥터입니다.	
12	로드셀 4 커넥터	4번 로드셀 연결 커넥터입니다.	
13	로드셀 3 커넥터	3번 로드셀 연결 커넥터입니다.	
14	로드셀 2 커넥터	2번 로드셀 연결 커넥터입니다.	
15	로드셀 1 커넥터	1번 로드셀 연결 커넥터입니다.	

2) ADJ-DS

번호	명칭	기능	
1	USB 커넥터	데이터 저장 및 펌웨어 업그레이드 용 USB 커넥터	
2	상/하/좌/우 스위치	표시 부 내용의 상/하/좌/우를 조작할 때 사용 Main Manu에서는 [좌] 또는 [우]키를 2초간 누르면 영점 키로 동작합니다.	
3	선택 스위치	설정 값 선택 시 사용	
4	표시기	0.96인치 OLED	

3. 결선 방법

단자 대는 연결선을 끼워 놓은 후에 나사를 조여 결선하고 연결선을 살짝 당겨 결선이 제대로 이 뤄졌는지 확인하십시오.

▲ 반드시 전원을 차단 또는 분리한 후에 결선하십시오.

▲ 결선 작업 시, 각 부의 위치 및 용도를 반드시 확인하시고 안전 사고에 유의하시기 바랍니다.

단자대 연결 가능한 와이어의 사이즈는 코어 직경 0.2~1.5 (AWG 24~16)입니다. 와이어 피복을 벗긴 부위는 10mm가 적당하며, 연선으로 이뤄진 경우에는 납으로 뭉쳐주거나 I-터미널을 사용하십시오.

커넥터 타입의 경우에는 내부 배선이 되어 있습니다.
 4페이지의 커넥터 타입 핀 사양을 참고하여 제공된 커넥터를 사용하십시오.

3.1. POWER (전원)

DC 7~28V 전원을 연결하십시오.

제품의 최대 소비전력은 1W이므로 그 이상의 충분한 용량을 공급해야 합니다. ▲ 반드시 분전함의 전원 차단기를 내린 상태에서 결선하십시오.

3.2. EXT (외부 연결)

RS-485(half duplex) 및 RS-232C 전기적인 노이즈에 민감하므로, 전원선을 비롯한 전기배선들과 별로도 분리하여 배선하고 반드시 쉴드 케이블을 사용하시기 바랍니다.

1) RS-485

ADJ 장비	외부 기기
C+	A/DO (TRXD+)
C-	B/RI (TRXD-)
GND	GND

2) RS-232

ADJ 장비	외부 기기	
RXD	TXD	
TXD	RXD	
GND	GND	

3) 오픈 컬렉터 (OP-13)

외부 출력은 오픈컬렉터이며, 포토커플러 또는 릴레이를 이용하여 접속하십시오. 출력 단자의 최대 부하는 DC 80V, 50mA입니다.

3.3. 스트레인게이지 센서

센서는 오른쪽부터 순서대로 번호에 맞게 연결하십시오. 터미널 단자의 번호는 설정 및 통신 시의 채널 구분 번호로 사용됩니다.

4. 부하 교정

<u>4.1. 실 부하 교정</u>

센서의 표준 실제 분동 및 부하(하중, 변위, 압력 등)를 가하여 교정하는 모드입니다.

번호	동작	표시 부
1	<u>교정 모드 선택</u> 센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다. MENU 화면에서 Calibration을 선택하십시오. 이 메뉴의 선택은 [상][하] 화살표만 사용하십시오. [좌] 또는 [우]키를 2초간 누르면 영점 키로 동작합니다.	MENU (1/2) Test Mode Setting Mode > Calibraion
2	<u>실 부하 교정 선택</u> 실 부하 교정(Actual Load)를 선택하십시오.	EXIT > Actual Load Digital Cal. Gravity
3	<u>센서 선택</u> 교정 하고자 하는 센서를 선택하십시오.	EXIT
4	<u>센서 동작 방향 선택</u> 센서의 동작 방향을 선택하십시오. 양방향(Bi-Direction)을 선택하면 정/역 방향으로 측정 가능합니다.	EXIT > Uni-Direction Bi-Direction
5	교정 구간 선택 성능이 좋이 않은 센서의 직선성을 소프트웨어로 보정합니다. 1구간으로 직선성이 보장되지 않을 경우에는 2,3,5,7,10 구간 중 원하는 구간을 선택하십시오.	EXIT > 1pt 5pt 2pt 7pt 3pt 10pt
6	최대 표시 용량 입력 최대 표시 용량 입력 후 NEXT를 선택하십시오. 최대 표시 용량이 300이고 소수점 2자리를 사용한다면 30000을 입력하십시오.	> NEXT EXIT
7	<u>최소 표시 눈금 선택</u> 최소 표시 눈금 선택 후 NEXT를 선택하십시오.	> NEXT EXIT MINIMUM DIVISION
8	<u>영점 교정</u> 무 부하 상태에서 A/D 변환 값이 안정되면 NEXT를 누르십시오.	> NEXT EXIT ZERO CALIBRATION 14959

9	 스판 교정 오른쪽에 교정 부하 값을 입력하고 부하를 가한 후에 A/D 변환 값 (예제 화면 368751)이 안정되면 NEXT를 선택하십시오. 1구간 선택일 경우, 직선성을 높이기 위해 최대용량의 10% 이상 의 부하를 사용해야 합니다. 에제 화면은 1구간 선택일 경우의 스판 교정 화면입니다. 5구간 선택일 경우에는 차례대로 5번의 스판 교정을 실행하십시 오. 각 구간의 입력 값은 가압하거나 올려 놓은 분동의 총 누계 량을 입력해야 하며, 부하 값 입력과 부하를 가하는 순서는 바뀌 어도 관계가 없습니다. 	> NEXT EXIT
10	<u>소수점 자릿수 선택</u> 소수점 자릿수를 선택 한 후 NEXT를 누르십시오. 소수점은 총 5자리까지 선택 가능합니다.	> NEXT EXIT DECIMAL POINT 0.00
11	<u>확인 및 저장</u> 실시간으로 부하 값을 표시합니다. 부하 교정 값이 맞는지 확인한 후 SAVE를 눌러 교정을 마칩니다. ❶ 무 부하 상태에서 값이 0이 아니면 [상] 또는 [하] 키를 눌러 영점 보상을 할 수 있습니다.	> SAVE EXIT VERIFICATION
12	위와 같은 방법으로 나머지 센서의 교정을 실행하십시오.	

<u>4.2. 등가 입력 교정</u>

센서의 출력 값(mV/V)을 입력하여 교정하는 모드입니다.

번호	동작	표시 부
1	교정 모드 선택 센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다. MENU 화면에서 Calibration을 선택하십시오. 이 메뉴의 선택은 [상][하] 화살표만 사용하십시오. [좌] 또는 [우]키를 2초간 누르면 영점 키로 동작합니다.	MENU (1/2) Test Mode Setting Mode > Calibraion
2	<u>등가 입력 교정 선택</u> 등가 입력 교정(Digital Cal.)를 선택하십시오.	EXIT Actual Load > Digital Cal. Gravity
3	<u>센서 선택</u> 교정 하고자 하는 센서를 선택하십시오.	EXIT Cell1 Cell4 Cell2 Cell5 Cell3 Cell6
4	<u>센서 동작 방향 선택</u> 센서의 동작 방향을 선택하십시오. 양방향(Bi-Direction)을 선택하면 정/역 방향으로 측정 가능합니다.	EXIT > Uni-Direction Bi-Direction
5	<u>최대 표시 용량 입력</u> 최대 표시 용량 입력 후 NEXT를 선택하십시오. 최대 표시 용량이 300이고 소수점 2자리를 사용한다면 30000을 입력하십시오.	> NEXT EXIT
6	<u>최소 표시 눈금 입력</u> 최소 표시 눈금 입력 후 NEXT를 선택하십시오.	> NEXT EXIT MINIMUM DIVISION 5
7	<u>센서 정격 용량 입력</u> 센서 성적서에 기재된 센서의 정격 용량(R.C.: Rated Capacity)을 입력하십시오.	> NEXT EXIT RATED CAPACITY 030000
8	<u>센서 정격 출력값 입력</u> 센서 성적서에 기재된 센서의 정격 출력 값(R.O.: Rated Output)을 입력하십시오. 참고로, 알루미늄 재질의 로드셀은 성적서의 출력 값이 실제 출력 값과 다를 수 있으니 반드시 고 정밀 DVM으로 실제 출력 값을 측정하여 입력하십시오. 출력 값 입력 후, NEXT를 누를 때 영점 교 정이 동시에 이뤄지므로 무 부하 상태에서 NEXT를 누르십시오.	> NEXT EXIT RATED OUTPUT

9	<u>소수점 자릿수 선택</u> 소수점 자릿수를 선택 한 후 NEXT를 누르십시오. 소수점은 총 5자리까지 선택 가능합니다.	> NEXT EXIT DECIMAL POINT 0.00
10	확인 및 저장 실시간으로 부하 값을 표시합니다. 부하 교정 값이 맞는지 확인한 후 SAVE를 눌러 교정을 마칩니다. ❶ 무 부하 상태에서 값이 0이 아니면 [상] 또는 [하] 키를 눌러 영점 보상을 할 수 있습니다.	> SAVE EXIT VERIFICATION 300.00 kg
11	위와 같은 방법으로 나머지 센서의 교정을 실행하십시오.	

5. 중력 보상

실 부하 교정 장소와 중력 가속도 값이 다른 타 국가 및 지역에서 사용할 경우, 사용 장소의 중 력 가속도 값을 입력하여 측정 값 보정을 하는 모드로 해당 사항이 없으면 사용하지 않습니다.

번호	동작	표시 부
1	<u>교정 모드 선택</u> 센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다. MENU 화면에서 Calibration을 선택하십시오. 이 메뉴의 선택은 [상][하] 화살표만 사용하십시오. [좌] 또는 [우]키를 2초간 누르면 영점 키로 동작합니다.	MENU (1/2) Test Mode Setting Mode > Calibraion
2	<u>중력 보상 선택</u> 중력 보상(Gravity)를 선택하십시오.	EXIT Actual Load Digital Cal. > Gravity
3	<u>중력 보상 장소 선택</u> 교정 장소(Cal. Spot)와 사용 장소(User Spot)의 값이 같으면 보상이 이뤄지지 않습니다. 중력가속도 값을 변경할 장소를 선택하십시오.	EXIT > Cal. Spot User Spot
4	<u>교정 장소 중력 가속도 입력</u> 교정 장소(Cal. Spot)의 중력가속도를 입력하고 SAVE를 누르십시오.	> SAVE EXIT CAL. SPOT 9.799
5	<u>사용 장소 중력 가속도 입력</u> 사용 장소(User Spot)의 중력가속도를 입력하고 SAVE를 누르십시오.	> SAVE EXIT USER SPOT 9.797

◆ 중력 가속도 테이블 (단위: m/s²)

Amsterdam	9.813	Manila	9.784
Athens	9.800	Melbourne	9.800
Auckland NZ	9.799	Mexico City	9.779
Bangkok	9.783	Milan	9.806
Birmingham	9.813	New York	9.802
Brussels	9.811	Oslo	9.819
Buenos Aires	9.797	Ottawa	9.806
Calcutta	9.788	Paris	9.809
Chicago	9.803	Rio de Janeiro	9.788
Copenhagen	9.815	Rome	9.803
Cyprus	9.797	San Francisco	9.800
Djakarta	9.781	Singapore	9.781
Frankfurt	9.810	Stockholm	9.818
Glasgow	9.816	Sydney	9.797
Havana	9.788	Tainan	9.788
Helsinki	9.819	Taipei	9.790
Kuwait	9.793	Tokyo	9.798
Lisbon	9.801	Vancouver, BC	9.809
London (Greenwich)	9.812	Washington DC	9.801
Los Angeles	9.796	Wellington NZ	9.803
Madrid	9.800	Zurich	9.807

6. 교정 변경

6.1. 영점 재 교정

영점의 변화가 생긴 경우, 영점만 재 교정하는 경우에 사용합니다.

번호	동작	표시 부
1	교정 변경 모드 선택 센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다. MENU의 다음 페이지를 [우]키를 눌러 이동하십시오. 교정 변경(Modification)를 선택하십시오.	MENU (2/2) > Modification Backup/Restore
2	<u>영점 재 교정 선택</u> 영점 재 교정(Zero Cal.) 메뉴를 선택하십시오.	EXIT > Zero Cal. Resolution Constant
3	<u>센서 선택</u> 영점 재 교정을 하는 센서를 선택하십시오.	EXIT Cell1 Cell4 Cell2 Cell5 Cell3 Cell6
4	<u>영점 재 교정</u> 무 부하 상태에서 A/D 변환 값이 안정되면 SAVE를 누르십시오.	> SAVE EXIT ZERO CALIBRATION 15328

<u>6.2. 분해도 변경</u>

소수점 자릿수를 변경하여 분해도를 변경합니다. 분해도 변경(Resolution)은 연결된 모든 센서에 일괄 변경 적용됩니다.

번호	동작	표시 부
1	교정 변경 모드 선택 센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다. MENU의 다음 페이지를 [우]키를 눌러 이동하십시오. 교정 변경(Modification)를 선택하십시오.	MENU (2/2) > Modification Backup/Restore
2	<u>분해도 변경 선택</u> 분해도 변경(Resolution) 메뉴를 선택하십시오.	EXIT Zero Cal. > Resolution Constant
3	분해도 변경 x 0.1 : 현재 표시된 값에서 마지막 자리가 제거됩니다. 원래 표시 값이 1998이라면 반올림하여 2000이 표시됩니다. x 1 : 교정 시의 원래의 분해도로 환원됩니다. x 10 : 현재 표시된 값에서 소수점 1자리가 더 추가됩니다. 현재 표시 값이 1998이라면 1997.5~1998.4로 표시합니다.	SAVE > × 0.1 × 1 × 10

6.3. 스판상수 변경

교정된 스판 상수 값을 변경하여 측정 값을 보정하는 메뉴입니다.

번호	동작	표시 부
1	<u>교정 변경 모드 선택</u> 센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다. MENU의 다음 페이지를 [우]키를 눌러 이동하십시오. 교정 변경(Modification)를 선택하십시오.	MENU (2/2) > Modification Backup/Restore
2	<u>스판 상수 변경 선택</u> 스판 상수 변경(Constant) 메뉴를 선택하십시오.	EXIT Zero Cal. Resolution > Constant
3	<u>센서 선택</u> 스판 상수 변경을 하는 센서를 선택하십시오.	EXIT
4	 스판상수 변경 반드시 현재의 스판상수 값을 기록한 후 보정하십시오. ▲ 다 구간 교정인 경우에는 단일 구간 교정으로 평균 처리되므로 주의하십시오. 	> SAVE EXIT SPAN CONSTANT 0.9876541

7. 백업 및 복원

번호	동작	표시 부
1	백업 및 복원 모드 선택센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다.MENU의 다음 페이지를 [우]키를 눌러 이동하십시오.백업 및 복원 (Backup/Restore)를 선택하십시오.	MENU (2/2) Modification > Backup/Restore
2	<u>백업 실행</u> 교정 시에는 첫번째 영역에 자동으로 백업이 이뤄집니다. 교정 및 메뉴 설정의 내용을 모두 백업하려면 Empty를 선택한 후, [좌] [우]키 2개를 동시에 누르십시오.	EXIT Backup > Empty Empty
3	<u>복원 실행</u> 설정 데이터를 복원하려면 해당 영역을 선택한 후, [좌] [선택]키 2개를 동시에 누르십시오.	EXIT Backup Backup Backup Empty
4	<u>삭제 실행</u> 백업된 데이터를 삭제하려면 해당 영역을 선택한 후, [우] [선택]키 2개를 동시에 누르십시오.	EXIT Backup Backup Backup Empty

8. 설정 모드

번호	동작	표시 부
1	설정 모드 진입센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다.설정 모드(Setting Model[좌] [우]키를 눌러 설정 메뉴 페이지를 이동할 수 있습니다.[좌] [우]키를 눌러 설정 메뉴 페이지를 이동할 수 있습니다.EXIT(1/6)Power on Zero> UnitLP FilterMH FilterEXIT(2/6)···································	MENU (1/2) Test Mode Setting Mode Calibraion
2	<u>측정 단위</u> (g / kg / ton / lb / N / KN / kgf*cm / kgf*m / N*cm / N*m) 측정 단위를 선택하십시오. 단위 변환은 측정 값 자동 환산 표시를 의미하지는 않습니다.	> SAVE EXIT UNIT kg
3	로우패스 필터 (Off / 0.7 / 1.0 / 1.4 / 2.0 / 2.8 / 4.0 / 5.6 / 7.0 / 10.0 / 14.0 / 20.0 / 28.0 / 40.0 Hz) 숫자가 높아질수록 표시 속도가 빨라집니다. 진동이 많은 곳에서는 숫자를 낮춰 사용하십시오.	> SAVE EXIT LP FILTER 2.0 hz
4	<u>이동 평균 필터 (Off~20 개)</u> 숫자가 낮아질수록 표시 속도가 빨라집니다. 진동이 많은 곳에서는 숫자를 높여 사용하십시오.	> SAVE EXIT
5	파워 온 제로 (Off / On) 장비의 전원 투입 시의 측정 값을 영점으로 표시하는 기능입니다. Off를 선택하면 교정 시의 영점 값을 기준으로 표시합니다.	> SAVE EXIT POWER ON ZERO On
6	영점 트래킹 (영점 시간: Off~9.5초 / 영점 폭: Off~9.5눈금) 미세한 먼지가 쌓여 영점이 변화하거나 센서의 부하를 완전히 제거하였음에도 영점으로 복귀하지 않을 때 자동으로 영점을 잡기 위한 기능입니다. 영점 시간(Zero Time)과 영점 폭(Zero Division)에 적정 값을 입력하십시오. 예시와 같은 설정값이라면, 0.5초동안 1.0눈금 이내로 측정값이 변화 하는 경우 자동으로 영점으로 보상하여 표시합니다.	> SAVE EXIT ZERO TIME 0.5 sec > SAVE EXIT ZERO DIVISION

7	<u>안정 검출 (안정 시간: Off~9.5초 / 안정 폭: Off~9.5눈금)</u> 안정으로 판단하는 검출 조건을 설정하는 기능입니다. 안정 시간(STB Time)과 안정 폭(STB Division)에 적정 값을 입력 하십시오. 예시와 같은 설정값이라면, 1.0초동안 2.0눈금 이내로 측정값이 변화 하는 경우 안정으로 판단합니다.	> SAVE EXIT STB TIME 1.0 sec > SAVE EXIT STB DIVISION 2.0 div
8	<u>장비번호 (00~99)</u> 시리얼 통신 시 장비 구분 번호로 사용하십시오.	> SAVE EXIT SERIAL ID 01
9	<u>통신 속도</u> (2400 / 4800 / 9600 / 19200 / 38400 / 57600 / 115200 bps) 시리얼 통신 속도를 선택하십시오.	> SAVE EXIT BAUD RATE 115200 bps
10	<u>데이터 비트 (7 / 8 bit)</u> 시리얼 통신 데이터 비트를 선택하십시오.	> SAVE EXIT DATA BIT 8 bit
11	<u>스톱 비트 (1 / 2 bit)</u> 시리얼 통신 스톱 비트를 선택하십시오.	> SAVE EXIT STOP BIT 1 bit
12	<u>패리티 비트 (None / Even / Odd)</u> 시리얼 통신 패리티 비트를 선택하십시오.	> SAVE EXIT PARITY BIT None
13	<u>통신 모드 (Stable / Stream / Command / Modbus-RTU)</u> 시리얼 통신의 모드를 선택하십시오. 안정 시 선택의 경우에는 측정 값 안정 시에 1회 전송합니다.	> SAVE EXIT SERIAL MODE Command
14	통신 포맷 (64 / 22 / 18 byte) 시리얼 통신의 포맷을 선택하십시오. 64 byte 포맷 선택 시에는 연결된 센서의 모든 데이터가 한 포맷에 한꺼번에 전송되며, 22 byte 포맷 선택 시에는 연결된 센서의 개수만큼 해당 포맷이 여러 번 전송합니다. 18 byte 포맷 선택 시에는 6개 채널의 합산 값이 통신 됩니다.	> SAVE EXIT SERIAL FORMAT 64 byte

15	측정 값 공백 표시 (숫자 0 / Space) 측정 값의 공백을 표시하는 방식을 선택하십시오. PLC와 통신 시에는 숫자 0, PC와 통신 시에는 스페이스의 선택을 추천합니다. ① Display에 표시된 숫자가 99라면, 숫자 0 : 000099 로 전송 스페이스 : 99 로 전송 ("_" 는 space 의미)	> SAVE EXIT GAP DATA NUM Ø (Ø×30)
16	공장 초기화 (No: 현 상태 유지 / Yes: 공장 초기화 실행) 공장 초기화를 실행하면 교정 값을 제외하고 모든 설정 모드 값이 출하 당시의 값으로 초기화 됩니다. ▲ 데이터 백업을 하지 않은 경우에는 초기화 실행 후 데이터를 복원할 수 없으니 절대 주의하시기 바랍니다.	> SAVE EXIT FACTORY RESET No

9. 테스트 모드

번호	동작	표시 부
1	<u>테스트 모드 진입</u> 센서 연결 후 장비에 전원을 공급하면 MENU 화면이 표시됩니다. MENU 화면에서 Test Mode를 선택하십시오.	MENU (1/2) > Test Mode Setting Mode Calibraion
2	<u>메뉴 선택</u> 테스트 하고자 하는 메뉴를 선택하십시오.	EXIT > ADC Display CAL Display
3	<u>ADC 값 표시</u> 교정 되지 않은 Analog to Digital 변환 값이 표시됩니다.	> EXIT 11: 376583 21: 368587 328936 4: 3128936 4: 3128936 5: 383871 6: 399873
4	<u>교정 값 표시</u> 교정 된 측정 값이 표시되며 맨 하단에는 합산 값이 표시됩니다. ❶ 무 부하 상태에서 값이 0이 아니면 [상] 또는 [하] 키를 2초간 눌러 영점 보상을 할 수 있습니다.	> EXIT 1: 238.25 kg 2: 245.55 kg 3: 201.40 kg 4: 223.70 kg 5: 219.35 kg 6: 267.80 kg T: 1396.05 kg

10. 시리얼 인터페이스

RS-232C 및 RS-485(half duplex)는 전기적인 노이즈에 민감하므로, 전원선을 비롯한 전기배선들과 별로도 분리하여 배선하고 반드시 쉴드 케이블을 사용하시기 바랍니다. 시리얼 인터페이스 방식 선택은 설정 모드를 참고하십시오.

10.1. 전송 데이터 포맷

1) 64바이트 (1열 6채널 통신)

HEX	ASCII (XOR CRC range)																				
STX	장비번호 구분 헤더 구분 1채널									구분			2치	ᅥ널			구분				
0x02	9	9	,	0	,	+	+				0		0	,	+				0	0	,

	ASCII (XOR CRC range)																				
3채널 구분										4채널 구분											
+					0		0	,	+					0		0	1				
							A	scii (X	OR	CR	C ra	ang	le)						AS	CII	HEX
	5채널 구분 6채널 구분 단위										C	RC	ETX								
+					0		0	1	+					0		0	,	0	F	F	0x03

❶ 헤더 ☞ 0: 안정 / 1: 불안정 / 2: 오버로드

❶ 단위 ☞ 0:g / 1: kg / 2: ton / 3: lb / 4: N / 5: kN / 6:kgf*cm / 7: kgf*m / 8: N*cm / 9: N*m

	ST	안정 (0x53) (0x54)				
H1	US	불안정 (0x55) (0x53)				
	OL	오버로드 (0x4F)(0x4C)				
H2	GS	총 중량 (0x47) (0x53)				
장비 번호	00 ~ 99	장비 번호는 다수의 장비를 사용할 때 장비 구분을 위해 사용됩니다				
채널 번호	1 ~ 6	연결된 센서의 채널 번호입니다.				
측정 데이터	예 1) 13.5 예 2) 135 예 3) -13.	g ' ', ' ', ' ', ' ', '1', '3', '., '5' g ' ', ' ', ' ', ' ', '1', '3', '5', ' ' kg '-', ' ', ' ', ' '1', '3', '., '5 '				
	g	(SP: 0x20) (g: 0x67)				
	kg	(k: 0x6B) (g: 0x67)				
	ton	(SP: 0x20) (t: 0x74)				
	lb	(l: 0x6C) (b: 0x62)				
단위	Ν	(SP: 0x20) (N: 0x4E)				
	Kgf*cm	(f: 0x66) (c: 0x63)				
	Kgf*m	(f: 0x66) (m: 0x6D)				
	N*cm	(N: 0x4E) (c: 0x63)				
	N*m	(N: 0x4E) (m: 0x6D)				
종료 문자	$C_{R} L_{F}$	(0x0D) (0x0A)				

2) 18바이트 - 합산통신

Н	1		Н	2				측	정	데이	터			단	위	종료	문자
																/	
S	Т	,	G	S	,	+	0	0	0	0	0	•	0	k	g	C_{R}	L_F

	ST	안정 (0x53) (0x54)			
H1	US	불안정 (0x55) (0x53)			
	OL	오버로드 (0x4F)(0x4C)			
H2	GS	총 중량 (0x47) (0x53)			
측정 데이터	예1) 13.5kg 예2) 135kg 예3) -13.5kg	y '+', ' ', ' ', ' ', '1', '3', '., '5' '+', ' ', ' ', ' ', ' ', '1', '3', '5' g '-', ' ', ' ', ' ', '1', '3', '., '5 '			
	g	(0x20) (0x67)			
다이	kg	(0x6B) (0x67)			
한지	ton	(0x20) (0x74)			
	lb	(0x6C) (0x62)			
종료 문자	C _R L _F	(0x0D) (0x0A)			

<u>10.2. 커맨드 전송 포맷</u>

본 장비를 외부기기에서 조작하고자 할 때 커맨드 모드를 사용할 수 있습니다.

전송 명령	STX	장비	번호		커맨드	ETX	전송 예제
ASCII	Г	0	1	,	지리스 기비 ㅋㄷ	L	02 01, MF 03
HEX	02	30	31	2C	지닛구 기면 고드	03	02 30 31 2C 4D 46 03
🖪 자비 비승르	비요취		710	자미	배송이 그녀 가중신도	페이하	즈 이스니다

장비 번호를 사용하지 않는 경우, 장비 번호와 구분 기호(,)는 제외할 수 있습니다.

기능	커맨드 * 괄호 안은 HEX	인디케이터 응답
측정 값 요청	MF (4D 46)	설정된 전송 포맷으로 PC전송
ZERO ₹	MZ (4D 5A)	Echo 응답

<u>10.3. ModBus-RTU 전송 포맷</u>

RS-485 통신 환경에서 동작하기 위한 모드버스 프로토콜의 한 종류로 장치 ID를 통하여 각 장치를 구분하고 CRC를 이용하여 에러를 확인하여 통신하는 프로토콜입니다.

Function Codes

Function code 03h : Read Holding Registers Function code 06h : Write Single Registers

주소 (HEX)	주소 (DEC)	길 이	R/W	설명
00h	0	2	RO	최대 표시
02h	2	1	RO	최소 눈금
03h	3	1	RO	소수점 위치
04h	4	2	RO	Ch1 AD 변환 값
06h	6	2	RO	Ch2 AD 변환 값
08h	8	2	RO	Ch3 AD 변환 값
09h	10	2	RO	Ch4 AD 변환 값
0Ah	12	2	RO	Ch5 AD 변환 값
0Ch	14	2	RO	Ch6 AD 변환 값
10h	16	2	RO	Ch1 측정 값
12h	18	2	RO	Ch2 측정 값
14h	20	2	RO	Ch3 측정 값
16h	22	2	RO	Ch4 측정 값

주소 (HEX)	주소 (DEC)	길 이	R/W	설명
18h	24	2	RO	Ch5 측정 값
1Ah	26	2	RO	Ch6 측정 값
1Ch	28	1	RO	Ch1 에러 상태
1Dh	29	1	RO	Ch2 에러 상태
1Eh	30	1	RO	Ch3 에러 상태
1Fh	31	1	RO	Ch4 에러 상태
20h	32	1	RO	Ch5 에러 상태
21h	33	1	RO	Ch6 에러 상태
22h	34	2	RO	합산 값
24h	36	1	RO	합산 램프 상태
25h	37	1	RO	합산 에러 상태
26h	38	10	-	Reserved
30h	48	1	WO	영점 요청

RO: 읽기 전용, WO: 쓰기 전용, RW: 읽기 쓰기

[Ch1~Ch6 에러 상태 맵]

8bit	7bit	6bit	5bit	4bit	3bit	2bit	1bit
오버 로드							센서 에러

[합산 램프 상태맵]

8bit	7bit	6bit	5bit	4bit	3bit	2bit	1bit
			안정				영점

[합산 에러 상태 맵]

8bit	7bit	6bit	5bit	4bit	3bit	2bit	1bit
오버 로드							

[영점요청] - HEX

0	1	2	3	4
합산값(전채널) 영점	1채널 영점	2채널 영점	3채널 영점	4채널 영점
5	6			
5채널 영점	6채널 영점			

예제) 영점요청 (합산값) 쓰기

Slave Address	Starting Address	Number of Register
1	30h	2

① 쓰기(Write Single Registers)

Request		Response	
Field Name	Hex	Field Name	Hex
Slave Address (Device ID)	01h	Slave Address (Device ID)	01h
Function	06h	Function	06h
Starting Address High	00h	Starting Address High	00h
Starting Address Low	30h	Starting Address Low	30h
Value High	00h	Value High	00h
Value Low	00h	Value Low	00h
CRC Code High	XX	CRC Code High	XX
CRC Code Low	XX	CRC Code Low	XX

예제) 최대 용량 읽기 (최대 용량: 3000)

Slave Address	Starting Address	Number of Register
1	00h	2

② 읽기 (Read Holding Registers)

Request		Response	
Field Name	Hex	Field Name	Hex
Slave Address (Device ID)	01h	Slave Address (Device ID)	01h
Function	03h	Function	03h
Starting Address High	00h	Byte Count	04h
Starting Address Low	00h	Data High	00h
Number of Register High	00h	Data High	00h
Number of Register Low	02h	Data Low	0Bh
CRC Code High	XX	Data Low	B8h
CRC Code Low	XX	CRC Code High	XX
		CRC Code Low	XX

[NOTE]